Options¶
This section documents the options components of the tree module.
options
¶
Defines sklearn.tree options interoperability.
This module provides functionality for interfacing with scikit-learn's tree-based algorithms within the Nextmv framework. It includes classes for configuring decision tree regressors.
CLASS | DESCRIPTION |
---|---|
DecisionTreeRegressorOptions |
Options wrapper for scikit-learn's DecisionTreeRegressor. |
DECISION_TREE_REGRESSOR_PARAMETERS
module-attribute
¶
DECISION_TREE_REGRESSOR_PARAMETERS = [
Option(
name="criterion",
option_type=str,
choices=[
"squared_error",
"friedman_mse",
"absolute_error",
"poisson",
],
description="The function to measure the quality of a split.",
default="squared_error",
),
Option(
name="splitter",
option_type=str,
choices=["best", "random"],
description="The strategy used to choose the split at each node.",
default="best",
),
Option(
name="max_depth",
option_type=int,
description="The maximum depth of the tree.",
),
Option(
name="min_samples_split",
option_type=int,
description="The minimum number of samples required to split an internal node.",
),
Option(
name="min_samples_leaf",
option_type=int,
description="The minimum number of samples required to be at a leaf node.",
),
Option(
name="min_weight_fraction_leaf",
option_type=float,
description="The minimum weighted fraction of the sum total of weights required to be at a leaf node.",
),
Option(
name="max_features",
option_type=int,
description="The number of features to consider when looking for the best split.",
),
Option(
name="random_state",
option_type=int,
description="Controls the randomness of the estimator.",
),
Option(
name="max_leaf_nodes",
option_type=int,
description="Grow a tree with max_leaf_nodes in best-first fashion.",
),
Option(
name="min_impurity_decrease",
option_type=float,
description="A node will be split if this split induces a decrease of the impurity #.",
),
Option(
name="ccp_alpha",
option_type=float,
description="Complexity parameter used for Minimal Cost-Complexity Pruning.",
),
]
List of Nextmv Option objects for configuring a DecisionTreeRegressor.
Each option corresponds to a hyperparameter of the scikit-learn DecisionTreeRegressor, providing a consistent interface for setting up decision tree regression models within the Nextmv ecosystem.
You can import the DECISION_TREE_REGRESSOR_PARAMETERS
directly from tree
:
DecisionTreeRegressorOptions
¶
Options for the sklearn.tree.DecisionTreeRegressor.
You can import the DecisionTreeRegressorOptions
class directly from tree
:
A wrapper class for scikit-learn's DecisionTreeRegressor hyperparameters, providing a consistent interface for configuring decision tree regression models within the Nextmv ecosystem.
ATTRIBUTE | DESCRIPTION |
---|---|
params |
List of Nextmv Option objects corresponding to DecisionTreeRegressor parameters.
TYPE:
|
Examples:
>>> from nextmv_sklearn.tree import DecisionTreeRegressorOptions
>>> options = DecisionTreeRegressorOptions()
>>> nextmv_options = options.to_nextmv()
Initialize a DecisionTreeRegressorOptions instance.
Configures the default parameters for a decision tree regressor.
Source code in nextmv-scikit-learn/nextmv_sklearn/tree/options.py
to_nextmv
¶
Converts the options to a Nextmv options object.
Creates a Nextmv Options instance from the configured decision tree regressor parameters.
RETURNS | DESCRIPTION |
---|---|
Options
|
A Nextmv options object containing all decision tree regressor parameters. |
Examples:
>>> options = DecisionTreeRegressorOptions()
>>> nextmv_options = options.to_nextmv()
>>> # Access options as CLI arguments
>>> # python script.py --criterion squared_error --max_depth 5