Options¶
This section documents the options components of the neural_network module.
options
¶
Defines sklearn.neural_network models interoperability.
This module provides options classes for scikit-learn neural network models that can be used with the Nextmv platform.
CLASS | DESCRIPTION |
---|---|
MLPRegressorOptions |
Options class for scikit-learn's MLPRegressor. |
Variables
MLP_REGRESSOR_PARAMETERS List of Nextmv Option objects for MLPRegressor.
MLPRegressorOptions
¶
Options for the sklearn.neural_newtork.MLPRegressor.
You can import the MLPRegressorOptions class directly from neural_network:
This class provides a convenient way to configure options for the scikit-learn MLPRegressor model to be used with Nextmv platform.
ATTRIBUTE | DESCRIPTION |
---|---|
params |
List of nextmv.Option objects that define the parameters for the MLPRegressor.
TYPE:
|
Examples:
>>> from nextmv_sklearn.neural_network import MLPRegressorOptions
>>> options = MLPRegressorOptions()
>>> nextmv_options = options.to_nextmv()
Source code in nextmv-scikit-learn/nextmv_sklearn/neural_network/options.py
to_nextmv
¶
Converts the options to a Nextmv options object.
RETURNS | DESCRIPTION |
---|---|
Options
|
A Nextmv options object containing all the parameters for the MLPRegressor. |
Examples:
>>> options = MLPRegressorOptions()
>>> nextmv_options = options.to_nextmv()
>>> # Use nextmv_options with a Nextmv model
Source code in nextmv-scikit-learn/nextmv_sklearn/neural_network/options.py
MLP_REGRESSOR_PARAMETERS
module-attribute
¶
MLP_REGRESSOR_PARAMETERS = [
Option(
name="hidden_layer_sizes",
option_type=str,
description='The ith element represents the number of neurons in the ith hidden layer. (e.g. "1,2,3")',
),
Option(
name="activation",
option_type=str,
choices=["identity", "logistic", "tanh", "relu"],
description="Activation function for the hidden layer.",
),
Option(
name="solver",
option_type=str,
choices=["lbfgs", "sgd", "adam"],
description="The solver for weight optimization.",
),
Option(
name="alpha",
option_type=float,
description="Strength of the L2 regularization term.",
),
Option(
name="batch_size",
option_type=int,
description="Size of minibatches for stochastic optimizers.",
),
Option(
name="learning_rate",
option_type=str,
choices=["constant", "invscaling", "adaptive"],
description="Learning rate schedule for weight updates.",
),
Option(
name="learning_rate_init",
option_type=float,
description="The initial learning rate used.",
),
Option(
name="power_t",
option_type=float,
description="The exponent for inverse scaling learning rate.",
),
Option(
name="max_iter",
option_type=int,
description="Maximum number of iterations.",
),
Option(
name="shuffle",
option_type=bool,
description="Whether to shuffle samples in each iteration.",
),
Option(
name="random_state",
option_type=int,
description="Determines random number generation for weights and bias initialization, train-test split if early stopping is used, and batch sampling when solver='sgd' or 'adam'.",
),
Option(
name="tol",
option_type=float,
description="Tolerance for the optimization.",
),
Option(
name="verbose",
option_type=bool,
description="Whether to print progress messages to stdout.",
),
Option(
name="warm_start",
option_type=bool,
description="When set to True, reuse the solution of the previous call to fit as initialization.",
),
Option(
name="momentum",
option_type=float,
description="Momentum for gradient descent update.",
),
Option(
name="nesterovs_momentum",
option_type=bool,
description="Whether to use Nesterov's momentum.",
),
Option(
name="early_stopping",
option_type=bool,
description="Whether to use early stopping to terminate training when validation score is not improving.",
),
Option(
name="validation_fraction",
option_type=float,
description="The proportion of training data to set aside as validation set for early stopping.",
),
Option(
name="beta_1",
option_type=float,
description="Exponential decay rate for estimates of first moment vector in adam.",
),
Option(
name="beta_2",
option_type=float,
description="Exponential decay rate for estimates of second moment vector in adam.",
),
Option(
name="epsilon",
option_type=float,
description="Value for numerical stability in adam.",
),
Option(
name="n_iter_no_change",
option_type=int,
description="Maximum number of epochs to not meet tol improvement.",
),
Option(
name="max_fun",
option_type=int,
description="Only used when solver='lbfgs'.",
),
]
List of options for scikit-learn's MLPRegressor.
You can import the MLP_REGRESSOR_PARAMETERS directly from neural_network:
This list contains all the parameters that can be configured for a MLPRegressor model from scikit-learn. Each option is defined as a nextmv.Option object.